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1.

In this paper we look at some fundamental results on Hermite and
Hermitc-Birkhoff interpolation by elements of Haar spaces and apply these
to certain problems in the approximation of a function and its derivatives.
Important interpolation results have been given by Ikebe 16] and Haussmann
14. 51. We shall use the main theorem of 15] to generalize the main theorem
of 161. As an application we obtain information about the dimension of the
set of best approximations of a function and its derivatives. An example is
presented.

2.

A basic notion in approximation and interpolation theory is that of a Haar
(or Tchebycheff) space. A subspace H of Cia, b I of finite dimension n is
called a Haar space if every element h E H has at most n - 1 distinct zeros
in Ia. b I or else vanishes identically. As is usual we shall say that
h E CI a. b] has a zero of multiplicity k at Xo E Ia, bI if h(xo) = hi (xo) = ... =
h1k "(xol = 0 and either h1k'(xo) * 0 or does not exist. We say the
multiplicity is 00 if h(i)(xo) = 0 for all i ~ O. A zero in (a, b) where h does
not change sign will be called a nonnodal zero. Any other zero of h in la, b J

will be called a nodal zero. This is the terminology of Karlin and Studden

191·
In Theorem 2 that follows, it will be convenient to use the terminology of

Atkinson and Sharma [1]. Let E = (eu)' B = (bu)' 1 ~ i ~ r, 0 ~j ~ k, where
each entry of E is either 0 or 1 and the entries of B are given real numbers.
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Let a I < a 2 < ... < a r be points in Ia, b I that will be called nodes. The nodes
and the matrices E and B determine a Hermite-Birkhoff interpolation
problem for a subspace H of C(kl Ia, b I, the space of real-valued functions on
la, b1with continuous kth derivatives. That is, we seek to find an hE H. if it
exists such that hU)(a;) = bij whenever eij = I. The matrix E is called an
incidence matrix. Note that not all the entries of B are relevant to the
problem. For dim H = n, it is usually required that exactly n of the entries of
E be I, but we will not insist on this here. If for a given H the interpolation
problem determined by a specific E and any set of r distinct nodes and any
B, always has a solution, E is said to be poised. E is said to be conservative
if whenever we have eij = 0, ei •i j I = ei •i . 2 = ... = ei .i , 'I I =, 1 and ei I' q= ()

or is undefined, for some i, j and even q, then either e," =°for all u > i.

(' <) or else eUl =°for all u > i, l' <j. An incidence matrix E satisfies the
P61ya condition if for q = 0. I, .... k. the total number of 1's in columns 0 to q
is at least q + 1. Finally, an interpolation problem will be called Hermite if
the associated matrix E = (eij) has the property that eij == 1 implies eu =c I
for °~ l' ~j. A fuller discussion of the definitions and also some examples.
can be found in 11, 61.

For HcC(kl!a,bl and i an integer, O<i~k. define H lil by
H(i) == jh(i); h E H~. H will always be a subspace in this paper.

3.

The following theorem is due to Haussmann 151. The proof in the cited
work is intertwined with some related results and a great deal of notation is
introduced as a consequence. We supply a short, direct proof of the theorem.
While it is arranged somewhat differently, the proof below uses the same
ideas as in [5]. We begin with a preliminary lemma.

LEMMA. For k;;:: 0, let JE C<kl!a, b I and suppose that X o E (a, b) is an
isolated zero oj f,f' ,... ,j(kl. Also suppose that X o is a nonnodal zero ojP k).
Let gl' g2 be Junctions in Clk)la, bl such that

(1) g~i)(xo) = 0, °~ i ~ k - 1, gikl(xo) > 0,

(2) g~i)(xo) = 0, 0< i < k - 1, g~kl(xo) < 0,

where the homogeneous conditions are omitted if k = 0. Then given °< E

min~b - x o' X o - a} there is an i, 1< i ~ 2 and a 15 >°such that J + J*gj
has two distinct zeros in the deleted neighbourhood (x o - E, Xo + 8) - lxo}for

0< 15* ~ J.

Proof Assume first that k is even. Then f must have a nonnodal zero at
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XO' Then also assumef(x)?O in a neighbourhood of xo' If g2 satisfies (2)
above and 6* > 0, then for k? 2, f + 6*g2 has a nonnodal zero at X o and
U + 6*g2)(x) < 0 in a deleted neighbourhood of x o' If k = 0,
U + 6*g2)(xo) < O. Using the intermediate value theorem and standard
arguments, the required result follows. The case where f(x):(;. 0 in a
neighbourhood of X o is treated similarly using gl' Now assume that k is odd
so that f has a nodal zero at X o' Then also assume f(x) >0 in a right
neighbourhood of X o and f(x) < 0 in a left neighbourhood of X o' Then if g2
satisfies (2) above and 6* > 0, f + 6*g 2 has a nodal zero at X o and is such
that U + 6*g2)(x) < 0 in a right neighbourhood of X o and U + 6*g2)(x) > 0
in a left neighbourhood of X o ' Again the required result follows from the
intermediate value theorem. The last remaining case is handled similarly,
using gl' I

THEOREM I (Haussmann). Let He Clkl[a, b j and H(ll, Hl 2l, ... , Hlkl be
Haar spaces on la, b I with dimension H = n, nftnite. Let A o =:J A I =:J ••• =:J A k
be subsets of la,b], where Ai has mi elements ~aj}, 1 :(;.j:(;.m; and
\ '~.. 0 m i :(;. n. Further require that ja, b} n A I = 0. Then given arbitrary real
numbers lbjf. 0:(;. i:(;. k, I :(;'j:(;.m;, there is a function hEH such that
hU1 (aj) = bj, 0:(;. i:(;. k. I :(;.j:(;. mi' If L~~o mi = n, there is exactly one such
function.

Proof The proof proceeds by induction. Clearly it suffices to show that
for ,,~ 0 mi = nand bj = 0 for all i and j, the above interpolation problem
has only the solution hex) == O. The theorem is clearly true for k = 0 and any
n. from the definition of Haar space. Assume that the theorem is true for
k = r and any n. Suppose for k = r + 1 that there is a function h E H,
hex) i= 0 that satisfies a homogeneous interpolation problem of the type
indicated above. First assume that every element in A r. I is a nonnodal zero
of h(rl. By the lemma and the induction hypothesis it is possible to find
Ii E H such that

(i) w(x) == hex) + Ii(x) i= 0,

(ii) w U1 (x) = 0 for O:(;.i:(;.r and xEA;~Ar+l'

(iii) wU1 (x) = 0 for O:(;.i:(;.r-I and xEAr+l'

(iv) j disjoint deleted neighbourhoods about each x E A r + I where
w(x) has two distinct zeros not in A o' We see that w(x) has at least n zeros
in la, b I where we have counted each interior zero a number of times equal
to the minimum of its multiplicity and r + 1. Thus w(x) == 0 by the induction
hypothesis, a contradiction. Now assume that there is a zero X o of h in A r+ I

that is a nodal zero of h(r). Observe that it must be a nonnodal zero of h(r+ I l.

Using Rolle's theorem, hi has n - 1 zeros in (a, b) counting each zero as
above. Let B represent the set of mo- I new zeros of hi introduced by the
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differentiation. Then by the lemma and the induction hypothesis, there is an
h' E HI I) such that

(i) w'(x)==h'(x)+h'(x)i=O (h'i=O slOce the contrary implies
h == 0),

(ii) wli)(x)=O, 1 ::;;;i::;;;r+ I, xEA i {xof,

(iii) w'(x) = 0, x E B.

(iv) w(i)(xo) = 0, I ::;;; i::;;; r,

(v) w' has two distinct zeros in a deleted neighbourhood of xu'

disjoint from A I U B. Thus w' has a total of n zeros, counting as above.
Thus w' (x) == 0 by the induction hypothesis, a contradiction. I

Remark. We observe that Theorem I and the lemma can be combined to
show that a non-zero function h in a space H satisfying the conditions of
Theorem I can have at most n ~ 1 zeros where interior zeros of multiplicity
less than k + 1 are counted a number of times equal to their multiplicity and
any interior zero Xu of multiplicity k + I is counted k + I times if it is a
nodal zero of hlk ) and k + 2 times otherwise.

When differentiation reduces the dimension of H(i), 0::;;; i::;;; k, it is possible
to make a stronger statement than that of Theorem 1. We shall combine
Theorem I with the result of lkebe 16] to obtain Theorem 2 that gives both
of these results as special cases. The first part of the proof of Theorem 2
closely parallels the proof in [6[, so this will only be sketched. We begin
with two definitions.

DEFINITION. Let E be an incidence matrix for some interpolation
problem. A matrix formed from E by augmenting a last column consisting of
zeros or ones. will be called an extended incidence matrix (for the inter
polation problem).

DEFINITION. Let C be an extended incidence matrix with p columns.
p ~ 3. A matrix C* will be called derivable from C if it can b obtained from
C in the following way: whenever a row i of C begins with a 1 and for
minimal j > i, row j begins with a 1, either add to C anywhere between row i
and row j, a row that has a I in the second position and zeros elsewhere, or
alter a row of C strictly between row i and row j by changing the second
zero that appears in this row to a 1. Call the new matrix so obtained C.
Form C* by deleting the first column of C.

THEOREM 2. Let He Clk)[a, b I and HilI, H(2), ... , Hlk) be Haar spaces on
[a, b]. Let m be an integer 0::;;; m ::;;; k and require that for an integer n ~ m.
dim Hli) = n -- i, where i::;;; m. If m < k require further that for m ::;;; i::;;; k the
functions in H(i) can be extended so as to form a Haar space with dimension
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III fill = max{llfll, II!' II, ... , Ilpk)II},

dim H(i) on some open interval containing la, b I. Let E = (eiJ be an
incidence matrix for a Hermite-BirkhojJ interpolation problem using H,
H(I ), ..., H(k). Require that the following conditions hold:

(i) E satisfies the P6lya condition,

(ii) E is conservative,

(iii) Whenever j,) m + I and eu= I then ei,j_1 = I,

(iv) E has exact(y n entries of" I."

Then E is posed.

Proof Suppose there is an hE H, hex) =i= 0 that satisfies a homogeneous
interpolation problem with incidence matrix E. Form the extended incidence
matrix B by adjoining a column of zeros to the right of E. By Rolle's
theorem h' has a nodal zero between each zero of h. Then h' must satisfy an
interpolation problem with an extended incidence matrix with n -- I "I "
entries, that is derivable from B. Specifically, calling such a matrix B I' we
mean that h' satisfies a homogeneous interpolation problem with incidence
matrix BI , defined to be B 1 with the last column omitted. Also, whenever
there is a one in the last two positions of a row in B 1 this is interpreted to
mean that h(k) has a nonnodal zero at the point corresponding to this row. It
is to make this interpretation that the extended incidence matrix was
introduced. We may verify that ifl satisfies (i}-(iii) and that the extended
incidence matrix B 1 has n - I entries of "1." Proceeding similarly, we obtain
a sequence of matrices B 2' B3'"'' Bm' Now Bm is in Hermite form and has
n ~ m elements. H(m) has dimension n - m. By the remark following
Theorem I we see that hIm) == O. Since E, if/, if2 , ... , Bm _ I satisfy the P6lya
condition we may deduce that hex) == 0, a contradiction and the theorem
follows. I

4.

Consider now the problem of finding a best approximation h from a
subspace He Clk) Ia, b) to a function fE Clk) [a, b) using the norm Iii· III
defined by

where II . II represents the sup norm on la, b].
This problem has been treated, especially when H IS a space of

polynomials, by many authors: 12, 3, 7, 8, 10-12, 14, 16 j.

DEFINITION. Let fE C(k)la, b]. If Xo E la, b] is such that for
h E C(k) Ia, bJ and some i, 0 ~ i ~ k, Ih(i)(xo) - f(i)(xo)1 = III h - fill, call X o an
i-extreme point of h - f
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We may observe that existence of best approximations IS readily
demonstrated when H is finite dimensional.

We can now obtain the following theorem. Some of the ideas used are
similar to those of Johnson and Schuurman.

THEOREM 3. LetfE Cl k' "la,bl, k,?2 and let HcClk+'lla,bl be a
Haar space of dimension n such that dim HW = n ~ i for i ( k - 1. Require
also that HI 1l.H(2), ... ,H(k+l) be Haar on la,bl. IfdimH(k)=n~k+1.
require also that Hlk- I l, Hlkl and H(k, I) be restrictions to Ia, b] of Haar
spaces of similar dimension on some open interval containing Ia. b]. Then the
dimension of the (convex) set of best approximations to f using norm 111 . 111 is
at most k + 1. If dim H1kl = n - k, and if H(kl and H1k+ 1) are restrictions to
la, b] of Haar spaces of similar dimension on some open interval containing
la, b I, then we can further deduce that ifp and q are best approximations to

f then p(k) = q(k).

Proof Assume that p and w, p'* IV, are two functions of best approx
imation in the relative interior of the set of best approximations. Then every
i-extreme point of IV - f is an i-extreme point of p - f with error of similar
sign. If Xu is an interior i-extreme point of IV - J, then since necessarily
l1'u + 1)(xu) = fli + 1)(xu), Xu is not an (i + 1)-extreme point of w - f Note,
however. that for such xu' plil(xu) ~ wJxu) = pli + Il(xu) - wli

+ 1\xu) = O.
Denote the number of boundary i-extreme points of w - f by a j and the
number of interior i-extreme points of w - f by pj • Let Q == {M (k - 2:
Lr~j (a i + 2Pi) (M - J for all J such that 0 (J (Mf. Let d == card Q. Let
R = {x E {a, b f: x is not a (k -~ 1)-extreme point of IV ~f f. Let g == card R.
Then m == 2:.:7~ ua j + 22:.:7 U Pi + d +g '? n + 1. Indeed since w is best, there
can be no z E H such that for each i. 0 (i (k. sgn z(i)(x) =
sgn(jW(x) - w(i)(x)) '* 0 whenever x is an i-extreme point of w-f
Supposing m ( n form the following interpolation problem:

(1) zW(x) = sgn(j(il (x)- w(ll(x)) if x is an i-extreme point of w - f
(2) ZU-II(X) = 0 if x is an interior i-extreme point of w - f and

either i < k or i = k and x is a (k - 2) extreme point of w -~ J,
(3) Zlk Il(X) = 0 if x is an interior k-extreme point of IV -f but not a

(k - 2)-extreme point of IV ~f
(4) zlil(b) = 0 if i E Q.

(5) Z(k II(X) = 0 if x E R.

Clearly, the number of conditions to be satisfied is L7~u a j +
2 2.::7= U Pi + d + g = m (n. By Theorem 2, the above interpolation problem
has a solution, a contradiction. Note that (2) and (3) above serve to satisfy
condition (ii) of Theorem 2. Conditions (3) and (5) serve to satisfy (iii) and
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(4) serves to satisfy (i) of that theorem. Note further that if dim H(k) = n - k,
consideration of the interpolation problem with (5) omitted and similar

arguments allows us to deduce that L~~oai+2L~=oPi+d~n+1. Now
consider r = p - w. If Xo is an interior i-extreme point of w - f, 0 <i <k,
then r li ) has a zero of multiplicity at least 2 at Xo- If X o is a boundary i
extreme point of w - f, 0 <i <k, r li) has a zero at x o' By differentiating r k
times and mimicking the proof of Theorem 2, we may deduce that if
dimH(k)=n-k, rlk ) has at least L7=oai+2L7~oPi-k+d~n-k+I
zeros, counting nonnodal zeros twice and nodal zeros once. The number d is
introduced since there are at least d differentiations where the number of
zeros of the derived function is not reduced. We see that rlk )== 0 as required.
Suppose now that dim H(k) = n ~ k + I. Then if we add the g conditions on
r1k I), namely rlk-1)(x)=O if xER, we find that rlk ) has

Y'7 0 a i + 22:..7= 0 Pi - k + d + g ~ n - k + I zeros counting as before. Thus
r lkl and hence r lk - Ii are identically zero. The set T == {r lk - I): r = w -- p; p a

best approximation to f f is convex and contains 0 as a relative interior
point. We see that this set intersects the space V == {h E Hlk - Ii: h(xo) = 0 for
X oE R f only at O. Since V considered as a subspace of Hlk-l) has co

dimension g < 2, it follows that T has dimension <2 and that the space of
best approximations has dimension <,k + 1. I

The theorem does not include the case k = 1. In fact a stronger result can
be given in this situation.

THEOREM 4. Let fE Cmla, bland let He C(2lla, b] be a Haar space of
dimension n. If HI I) is a Haar space of dimension n - 1 on Ia, bland if p
and q are best approximations to f from H in norm III . III, k = 1, then p(x) ==
q(x) + C for some constant C. If H( Ii is the restriction of an n-dimensional
Haar space on an open interval containing [a, b I, then the set of best approx
imations to f from H in norm III . III has dimension at most one.

Proof An analysis of Moursund's result 1141 on the special case of
polynomial approximation shows that his proof depends only on the fact that
dim HIl) = n - I and the ability to do Hermite interpolation with
polynomials. As we have seen, the latter property is a special case of Ikebe's
theorem. (Indeed for k = I this result is also given in Schuurman 1161,
although in the literature it is consistently attributed to Matthews 1131 whose
paper appeared later.) Thus Moursund's argument can be used to establish
the first part of the theorem. Now assume that HI I) is the restriction of an 11

dimensional Haar space. Suppose that p and ware best approximations, w in
the relative interior of the set of best approximations. Let Eo = {x E [a, b I: x
is an O-extreme point of w - f} and let E I = {X E Ia, b 1: x is a I-extreme
point of w - n. Now card(EoU E 1) + card(E 1) ~ n + I by Haussmann's
theorem and arguments previously employed in Theorem 3. Let r = p - w.
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Then r has at least a double zero at all x E Eo except possibly for x E la. b l.
Similarly r' has a double zero at all x E E \ except possibly for x E 1a, b}. By
considering the various possibilities for a and b we may deduce that there are
sets Sand T, S c Eo U E l' T c S where r' is zero on Sand r" is zero on T
and cardS+cardT~card(EoUEJ)+cardEJ-2~n-1.By an argu
ment similar to that used at the end of the proof of Theorem 3, we may
deduce that the space of best approximations is at most one-dimensional.

5.

We present an example where the space of best approximations in norm
III . III, k = I, is one-dimensional, but where pairs of best approximations do
not differ by a constant.

EXAMPLE. Let H=span{eX,e 2X f with domain taken to be II, I +ln21.
ClearlyH = HI I). H is known to be a Haar space 1151. Denote I + In 2 by b.
Let g be a differentiable function defined on [I, 1.0 I I such that
g( I) =c g' (I) = 0.0 (; g' (x) < 1 on its domain and such that g( 1.01) > 0.0099.
Such ~~ function clearly exists. Define / on [I, bI by

f(x)=e X + 1-(x-b)2.

= eX + 0.9999.

= eX - x + g(x) + 2.0099 - g(1.0I).

One may verify that

xE [b-O.Ol,bl.

x E [1.0 I, h - 0.0 II.

xE II, 1.011·

(I) / (b) = eb + I,

(2) !/(x)-- eX] < I if x E II, b).

(3) j'(I)=e--1,

(4) i!'(x)- eX! < I if x E II. b) -- \ I, 1.01, b - 0.01 i.

As defined, / fails to be differentiable at 1.0 I and b - 0.0 I. but we may find
a function! such that

(5) !EC(21 II,bl,

(6) !(x)=/(x) if xE II, 1.0lju Ib-O.OI,bl,

(7) I!(x)·- eXI < 1 if x E \1.01, b - 0.011.

(8) I!'(x) - eXI < I if x E 11.01, b - 0.01].

Now )'\(x) = eX is a best function-derivative approximation to! from H.
Indeed if )'2 were better, then y(x) = y\(x) - )'2 (x) < 0 at x = band
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y'(X)=)"I(X)~Y;(X»O atx= I. Supposey(x)=c\ex+c2e2X. Then c\ and
C2 must be chosen so that

and

i.e"

and

which is clearly impossible.
Consider the function ,v(x)=e2x -2ex

+
1
, }1EH. Note that y(x) isO at

x = band ,(o'(x) is °at x = 1. Also, P(b) = 4e2>°and Y"(I) = 2e 2 > 0.
Therefore for c > 0, Iy I (x) - cy(x) -1(x)1 <; 1 in some left neighbourhood of
x = b and Iy; (x) ~ cp (x) ~l' (x)1 <; 1 in some right neighbourhood of x = I.
It follows that for sufficiently small c > 0,

is also a best approximation to 1, and indeed all best approximations must be
of this form.

Remark. The situation of seeking a best approximation in norm III . II!,
k = I, from a space of the form H = spje'\'x, e.'qXi, Al i= A2; AI' A2 i= °has an
unusual feature. It was crucial that in the example of the previous section the
intervals have length exactly In 2. Indeed, refer to the proof of Theorem 4. A
short argument shows that for the special case of H given above, except in
the instance of an interval of length (lnIA21-lnIA,I)/(A2~)"\)' we may
improve the theorem to show that the set of best approximations has
dimension 0, i.e., there is exactly one best approximation. This improves on
the results in 1111 and explains the unusual observations in that discussion.
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